skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thorpe, Connor"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2026
  2. Abstract Plasmodesmata (PD) are highly specialized, nanoscopic pores that traverse the cell wall to connect the cytoplasm of adjacent plant cells, enabling direct cell‐to‐cell communication. PD provides the continuity of three key cellular components: the plasma membrane, the endoplasmic reticulum (ER), and the cytosol. The compressed ER within PD is known as the desmotubule. PD mediates the intercellular trafficking of ions, metabolites, hormones, proteins, and RNA molecules between adjacent cells. Although several methods have been developed to quantify PD‐mediated molecular trafficking, it remains a technical challenge. Among these, PD‐mediated movement of fluorescent proteins is one of the most commonly used approaches. Here we present a microparticle bombardment method using a biolistic particle delivery system to investigate the PD‐mediated movement of fluorescent proteins. We equipped the delivery system with a flow guiding barrel to improve bombardment efficiency and consistency. We demonstrated the effects of gold particle aggregation and plant age on transformation efficiency and protein movement inArabidopsis. We also showed the feasibility of the method in determining PD‐mediated movement in tomato, pepper, and soybean. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Microparticle bombardment assay for measuring plasmodesmata‐mediated trafficking 
    more » « less
    Free, publicly-accessible full text available August 1, 2026